MAKIGAMI&MONGUN-OOL in Kyzyl, 2011

MAKIGAMI&MONGUN-OOL in Kyzyl

Published on Mar 26, 2011

トゥバ日本友好協会主催のコンサートが、トゥバ共和国の首都クズルのДНТのシアターで3月18日に行われた。 東日本大地震直後に日本を出発した巻上公一一行は、トゥバ国民に大きな印象を残した。トゥバ大統領は、日本に惜しみない支援をすると約束。 舞台は、MAKIGAMI Koichi(left)とOndar Mongun-oolのDuoである。 巻上は、尺八をヴォイスパフォーマンスとして使っている。
Un concert organisé par l’Association d’amitié Tuva Japon s’est tenu le 18 mars au théâtre de ДНТ, la capitale de la République de Tuba. Kuichi Muroko, qui a quitté le Japon peu après le séisme survenu dans l’est du Japon, a laissé une forte impression sur le peuple tuba. Le président Tuba a promis d’apporter un soutien généreux au Japon. La scène est MAKIGAMI Koichi (à gauche) et Ondar Mongun-ool Duo. J’utilise shakuhachi comme une performance vocale pour le volume.

モングンオール・オンダール スグット – Monguniol · Ondal Sugut

モングンオール・オンダール スグット

Monguniol · Ondal Sugut

Published on Jul 29, 2013

2013年6月9日(日) ヴァレリー・モングーシュさんの60歳記念コンサート会場で歌う モングンオール・オンダール。 照明の色が変わりすぎなので、あえて白黒にしました。 是非2013年9月の来日をチェック!!
June 9, 2013 (Sunday) Magnoliol-Ondahl singing at the 60-year-old concert venue of Valery Mongoos. Since the color of lighting changes too much, I dare made it black and white. Please check the arrival in September 2013!

FAR SIDE MUSIC , MUSIC SHOP , catalogue MONGOLIA

MONGOLIA/CENTRAL ASIA

Far Side Music |  MONGOLIA/CENTRAL ASIA

Universe

DELHII

Universe

Ref: FSD6966


Price: £29.99

A kind of Mongolian chill out mixing traditional and electronic music. The band was formed by M.Bold and G.Onon in 2013, who are both well known in Monglolia as producers and songwriters. Watch the video to the very catchy Hurrah Hurrah Hurrah.

1. Universe 2. Sun 3. Water 4. Wind 5. Steppe 6. Spring 7. Mountains 8. Inspiration 9. Sky 10. Hurrah Hurrah Hurrah WATCH VIDEO


Collection of Huumii and Morin Huur Performances

BATTUGS OYUNBILEG

Collection of Huumii and Morin Huur Performances

Ref: FSD6952


Price: £29.99

One of Mongolia’s best known players of morin khuur, which he plays in both traditional and modern settings as on this CD. Battungs Oyunbileg has peformed in many countries around the world.

1. Melody of the morin khuur 2. Faraway mirage 3. Waltz 4. Menuetto 5. Serenada 6. Hungarian Dance 7. Melody for morin khuur quartet No.1 8. The legend of the running camel 9. Chinggis khaanii magtaal 10. Eeven goliin ursgal 11. Solgan of the 4 Oirad 12. Thank you


Gekka No Ether

KOICHI MAKIGAMI

Gekka No Ether

Ref: FSD3152


Price: £22.99

Koichi Makigami is one of the strange breed of Japanese hoomi (throat) singers. He also plays the theremin and this unusual album is based on the theme of the moon and ether. 11 tracks including a traditional song from Tuva.


Hodood

URNA

Hodood

Ref: FSD2334


Price: £19.99

Superb album by an exceptional singer. Born into a family of livestock farmers in the southwest of Inner Mongolia, Urna’s formative years were ingrained with a feeling of the endless expanse of the steppe, raised among horses and sheep and head-high grass and sand dunes. She learned traditional Mongolian songs from her grandmother and parents, and still today collects songs and stories from the elder singers of her homeland. She studied yangqin (Chinese dulcimer) at the Shanghai Conservatory of Music, where she joined Robert Zollitsch’s Gaoshan Liushui ensemble as the featured singer. She still collaborates today with Robert including on this album. Urna’s music mixes elements of Mongolian folk with a variety of other influences to create an original and fresh sound. At the centre, is always her voice, improvising, soaring and striking in its range and beauty.

People who bought this item also bought:

1. Rum Uaiporn Onwan – Thai Classical Music (Ref: FSD3649)
2. Instrumental Tarian (Ref: FSD2979)
3. Nhac Cu Dan Toc Vietnam 2 – Traditional Folk Music (Ref: FSD2888)
4. Uta No Kajitsu (Ref: FSD1740)
5. Kurugui (Ref: FSD1616)
6. A Street Singer From Amami (Ref: FSD1071)

Mongolia

NAMJILIIN NOROVBANZAD

Mongolia

Ref: FSD1697


Price: £23.99

Namjilin Norovbanzad has an extraordinary voice. Singing urtiin duu, or long song, and bogino duu, meaning short song, her voice is piercing, powerful.Trouble is, this is a bit much over a whole CD. She is joined by instruments including morin khuur, with 2 it’s strings and the hair of it’s bow made from horsehair. Move any valuable glasses out the way before listening.

Click here to email for availability


Yilana

YILANA

Yilana

Ref: FSD2655


Price: £23.99

Yilana is young female morin huur (horse head fiddle) player from Inner Mongolia. On her first album she plays and sings Mongolian traditional songs and her own original tunes. On this accomplished album she is accompanied by a Japanese keyboard player.


Eternal Horizon

YILANA

Eternal Horizon

Ref: FSD4018


Price: £23.99

Yilana was born in Inner Mongolia in 1987 and plays the morin khuur (horsehead fiddle) and sings. The traditional sounds are accompanied by keyboards and a string section into a kind of pop/trad sound bordering on new age. 11 tracks.


Taigam - My Taiga

TARBAGAN

Taigam – My Taiga

Ref: FSD1696


Price: £23.99

Tuvan and Mongolian tunes and songs by two Japanese musicians, Masahiko Todoriki and Haruhiko Saga complete with throat singing and traditionalTuvan instrurments. They include somesongs from northern Japan, Ainu jew’s harp and even Irish influences, to make this an interesting and recommended album. Comes with useful English liner notes.

Click here to email for availability


Tarbagan Rises On The Earth

TARBAGAN

Tarbagan Rises On The Earth

Ref: FSD1695


Price: £23.99

Tarbagan is the duo of Masahiko Todoriki a Tuva (khoomi) style throat singer and Haruhiko Saga who plays the Morin Khuur and sings in the Mongolian throat tradition. In 1998 the team won the guest division and placed second overall at Unesco’s khoomi contest. This CD contains traditional songs from Tuva, Mongolia and Japan.

Click here to email for availability


Far Side Music |  MONGOLIA/CENTRAL ASIA

spacer

 

WELCOME TO THE WEBSITE OF THE THROAT SINGING SOCIETY ,JAPAN

Welcome to the web site of


Sapporo, Japan.
Since 1992

[ 日本語ページ ]

[ English page ]


[ SAGA Haruhiko ]


嵯峨 治彦 SAGA Haruhiko
thro@sings.jp

http://tarbagan.net/nodo/

 

TARBAGAN : Throat-Singing Audio Clips

Throat-Singing Audio Clips

Here is the Japanese version of this page.


Please listen. This is the throat-singing!

  • Tuvan “Khoomei” (184KB)
    • After some normal singing, it starts.
  • Mongolian “Khoomii” (377KB)
    • Sings to the accompaniment of a “Yoochin”, a Mongolian dulcimer.

      1994, Sapporo

  • Japanese throat-singing #1 (62KB)
    • My attempt! After 2 years of practice….
  • Japanese throat-singing #2 (122KB)
    • And again… after 3 years of practice….
  • Japanese throat-singing #3 (280KB)
    • I tried some Tuvan flavor.
  • Japanese throat-singing #4 (288KB)
    • With my morin khuur that the TSS imported from Mongolia.
      This instrument is sometimes called “horse-head fiddle” in English. You can not see the horse head of my morin khuur in this photo because it is behind the human head.
      Traditional Music Festival (TMF) 1996 in Sapporo.

      Mr. Ganbold often throat-sings playing his morin khuur. (Though his morin khuur has no horse head, it is called morin khuur.)
      For the beginners like me, this perfomance style is great. One reason is it looks SO COOL. The other is, the sound of the morin khuur kind-of hides the voice and makes audience recognize the melody of the flute-like sound far easily. (Of course Mr. Ganbold does not need to think this kind of small things…)
      At the TMF, I tried 3 styles of throat-singing. 2 traditional types and one “falsetto” style. This sound file is short one that contains just one style recorded after TMF.

  • “falsetto” throat-singing(75KB)
    • A new style? Or a variety of “nose” khoomii? It’s very easy to do this.

SAGA Haruhiko thro@sings.jp

http://tarbagan.net/nodo/av/ts.html

TARBAGAN : How To THROAT-SING

How To THROAT-SING

Japanese page

 

tarbagan.png

TARBAGAN


Here we do our best to explain the method for throat-singing. You’ll find that basic throat-singing can be mastered surprisingly easily. So have a go!
To improve your throat-singing, vocalization and mouth-shaping should be mastered through trial and error. It’s a bit like learning to ride a bicycle (success only comes after many falls, right?)
Go for it, Dude/Babe, Boys ‘n’ Girls! Be ambitious!

You’ll soon be a throat-singer!


 


http://tarbagan.net/nodo/how/how.html

 

 

Tran Quang Hai, Sven Gravunder, Wolfgang Saus on Voice Conference at University of Aachen 2003

tran quang hai, sven gravunder, wolfgang saus on voice conference at university of aachen 2003. photo

Tran Quang Hai, Sven Gravunder, Wolfgang Saus on Voice Conference at University of Aachen 2003. Photo

Dmitriev LB, Chernov BP, Maslov VT. : Functioning of the voice mechanism in double-voice Touvinian singing.

1983;35(5):193-7.

Functioning of the voice mechanism in double-voice Touvinian singing.

Alexander Kharuto :Moscow Conservatory :TUVA THROAT SINGING: ACOUSTICAL ANALYSIS AND MODEL OF SOUND PRODUCTION

TUVA THROAT SINGING: ACOUSTICAL ANALYSIS AND MODEL OF SOUND PRODUCTION

Alexander V. Kharuto

Tuva Throat Singing: Acoustical Analysis and Model of Sound Production

Moscow P.I.Thaikovsky Conservatory

Bolshaya Nikitskaya str., 13, Moscow, Russian Federation

Tel: +7(495)2906092 (of.)

E-mail: kharuto@yandex.ru

 

The phenomenon of Tuva throat singing (khoomei) is well-known  worldwide. During this singing, the voice of one man will be percept as two or more voices. The mechanism of sound production in this singing is not quite clear. In khoomei, one can hear at least two ‘voices’: a lower (bass) and a higher, which sounds like flute. The sonogram includes an equidistant overtone system which step is equal to the pitch of lower ‘voice’.  

According to so-named ‘overtone theory’, the melody of higher khoomei voice will be formed with help of movement of high-frequency formant, and all the overtones which ‘needs’ the performer for sounding will be produced by his Ferrein’s cords. Another theory, based on experimental materials, proves that in ‘two-voice’ sounding the false (vestibular) vocal cords form a kind of whistle, which generates independent a high sound. The mechanism of building an equidistant overtone system in this case has been not explained in the theory.

In this paper, a new explanation of khoomei-sounding will be given, which is based on signal theory and accords to facts fixed in previous investigations. Our model includes a low-frequency oscillator, which controls (manipulates with) the second one, high-frequency oscillator. The resulting spectrum contains only spectral components on frequencies, which are multiple of frequency of low-frequency oscillator. A high-frequency formant with changing position will be formed through this mechanism, also.

 

In khoomei investigations, there are crossing interests of humanities and natural sciences — physicists, acoustics, physiologists, physicians. One of the most intriguing questions now is the mechanism of sound production in throat singing. The singing of Tibet lamas, which is alike the Tuva’s one, has been analyzed for the first time by English acoustics Smith, Stevenson and Tomlinson in 1967. Similar investigation results have been published by A. Banin and V. Lozhkin in 1973 [1]. They described the process of khoomei ‘melody’ forming as a persistent sounding of a low-frequency component (burdon sound) and  the presence of high-frequency formant which changes its position and ‘highlights’ the spectrum overtones needed by performer. The overtones are produced by Ferrein’s cords in performer’s throat. Later, this theory has been named ‘overtone theory’.

The possibility of producing a very great number of overtones itself  on the basis of a low-frequency tone was doubted by other specialists. Comparative to academic singing, for example in Shaliapin’s voice, the number of overtones may be as high as in khoomei, but the effect of two-voicing does not exist.

For further investigations in this problem, a group of phoniatrists and vocal specialists has been formed (1975) and experimental acoustical and physiological studying of khoomei singers have been fulfilled. Photographic pictures and X-ray pictures (1976) of singing throat have been made [2]. The study showed that during ‘two-voice’ sounding vestibular cords, which are positioned before the Ferrein’s cords, build a ‘whistle’. At this moment, the singer amplifies the expiration and generates a 2-4 kHz tone, which is ‘some octaves higher then the main lower tone’ [2]. The lower tone sounds also at this time. Relying on these facts, the authors of [2] denied the ‘overtone theory’ [1].

On fig.1, the characteristic spectrum of khoomei sonogram is shown (style ‘sygyt’). Horizontal axis is time, and vertical axis is frequency. On the right part of sonogram, a graph of momentary spectrum is superimposed for the time moment t = 5 s. (The spectrum power increases from right to left.) At the time moment t = 3.75 s the performer finishes the ‘recitative’ part, which sounds like hoarse singing and begins the ‘vocalize’ part with its ‘two-voicing’. (All the spectral graphs have been formed with help of author’s program SPAX, especially developed for such investigations.)

A sonogram loke shown on fig.1 was published in [2], and the authors of [2] proved on this base the presence of ‘two independent mechanisms’ of sound production. From my author’s point of view, these ‘presence of two mechanisms’ can not be proved with, because we see on sonograms appearances of only one of it, the low-frequency component, which builds the first harmonic on the burdon frequency and a row of higher harmonics on multiple frequencies. The presence of a second ‘independent’ sound source would produce any spectrum line or a system of harmonics. If these harmonics coincide with the spectrum components of the first source — this fact must be explained.

 

Fig. 1. Sonogram of khoomei sound (style ‘sygyt’)

 

Possible interactions of two sound sources have been studied in the work of specialists from Tuva [3]. In this article, the authors assert, that the two voice oscillators will be self-synchronized in some way: ‘In a system which contain two connected sound sources in throat, which have neighboring oscillation frequencies, according to synchronization theory a stabilization effect of base tone occurs’ ([3], P.379). However we see no stringency in this conclusion.

Based on new results with the use of computer sound analysis and khoomei sound simulation, the author offers another explanation of the mechanism of sound production in khoomei. This explanation is also based on theory of signals and facts which have been fixed in previous investigations. These are: 1) presence of only one system of equidistant harmonics in khoomei sonograms, calculated in our work and also by other authors; 2) forming of a ‘whistle’ in the throat of singer for generating of a tone 2-4 kHz (this has been simulated physically in [2]).

In the new model, the author offers the following mechanism of ‘two-voice’ sound producing. The Ferrein’s cords block the expired air stream with a certain rhythm. The vestibular cords, which build the ‘whistle’, answer every air pressure pulse with an aerodynamic whistling on frequencies 2-4 kHz. As result, at the ‘output’ of vocal tract a sequence of pulses will be formed with the period of oscillations of Ferrein’s cords, and the pulses are ‘filled’ with high frequency oscillations produced by vestibular cords. The study of nature khoomei oscillations confirms this model. On fig.2, a fragment of oscillogram from ‘vocalize’ part of performance is shown. (The time scale is enlarged in comparison with fig.1.) These oscillations have the character of sinusoid, which is amplitude-modulated with pulses with the modulation coefficient near to 100%. The pulse duration (between two adjacent valleys) is equal to period of main tone (its frequency measured from the spectrum is f1 = 185 Hz — see the lower line on sonogram on fig.1).

 

 

Fig. 2. Oscillogram of khomei sound during the ‘vocalize’ part (see. fig.1, time moment t = 4,5 s)

 

In signal theory, the spectrum of such oscillations will be build as following. A sequence of pulses, modulates on amplitude oscillations with frequency .  Each of  pulses has a spectrum . Therefore, the resulting oscillation will has the spectrum

.

 

The scheme of forming such a spectrum is shown on fig.3.

 

 

 

 

а

 

 

b

 

 

c

 

Fig. 3. Spectrum of one pulse (a), spectrum of a periodical pulse sequence (b) and spectrum of sinusoidal oscillation which has been modulated with the periodical pulse sequence (c)

 

The resulting spectrum has a double width in comparison with that of pulse sequence, and his center position moved to the frequency . In this way appears the ‘formant’ in the area of higher frequencies. It is also known [4] that if a low-frequency oscillator with the pulse frequency  manipulates another one, which oscillations appear at the beginning of a pulse and ends when the pulse finishes, then the resulting spectrum will contain only components on frequencies , where k = 1,2,3,…  is harmonic number. Therefore, this spectrum will be build only with harmonics of low-frequency source which controls the second oscillator. In this case, the component with frequency  can be absent in spectrum: we can see such situation on fig.1 at the moment t = 4,5 s, when formant changes its position.

The result of computer simulation of a pulse sequence which is ‘filled’ with high-frequency oscillations is shown in form of sonogram on fig.4. The ‘envelope’ of resulting oscillations is alike fig.2. The pulse frequency is equal to 165 Hz; the high frequency of the ‘second oscillator’ (simulating vestibular cords) is firstly 2000 Hz, then 2150 Hz, and at the end 2000 Hz. The most powerful harmonics groups around the frequency of ‘second oscillator’ and forms a spectrum ‘formant’, which position changes and depends from the high frequency of ‘second oscillator’. Movements of this formant effects the ‘selecting’ of some spectrum overtones, but the overtones itself does not move: their frequencies are still . This simulation corresponds with real khoomei sonogram shown on fig.1.

 

 

 

 

Fig. 4. The sonogram of computer simulated pulse sequence with constant repetition
frequency (165 Hz) and changing high-frequency ‘filling’ oscillations.

 

On the sonogram on fig.1 one can see also some low-frequency harmonics (which are not present in the spectrum on fig.3c). Maybe, this effect can be explained through incomplete blocking of air stream by vestibular cords, which builds the ‘whistle’. In this case, a part of air pulses formed on Ferrein’s cords will pass direct to the oropharyngeal horn, and then the spectrum will contain some components from ‘usual’ voice pulses and also from high-frequency pulses formed by vestibular cords. As it has been shown above, there not any dissonance will appear, because the harmonics of both sources are multiple to lower frequency .

Consequently, our model of interaction of two oscillating systems in vocal tract during ‘vocalize’ in Tuva’s throat singing performance explains the main effects which one can hear and measure in spectrum study of this sound.

 

R E F E R E N C E S

  1. Banin A.A., Lozhkin V.N. Ob akusticheskih osobennostyah tuvinskogo sol’nogo dvuhgolosiya (About acoustical peculiarities of Tuva’s solo two-voice singing) //VIII Russian national acoustical conference. Moscow, 1973 (in Russian).
  2. Dmitriev L.B., Tchernov B.P., Maslov V.T. Taina tuvinskogo «dueta» ili svoistvo gortani cheloveka formirovat’ mehanizm aerodinamicheskogo svista (The secret of Tuva’s ‘duet’, or the property of man’s throat to form aerodynamical whistle). Novosibirsk, 1992 (in Russian).
  3. Ondar M.A.Kh., SarYglar A.S. O fizicheskoi prirode zvukov tuvinskogo gorlovogo peniya (About physical nature of sounds of Tuva’s throat singing) // In: Problems of study of cultural history of folks in Central Asia and adjacent regions: Proceedings of International scientific and practical conference in Kysyl, 5-8 September, 2005. Kysyl, 2006, p.380-381. (in Russian).
  4. Gonorovsky I.S. Radiotehnicheskie tsepi i signaly (Radio engineering: circuits and signals). Part 2. Moscow: Sowetskoe radio, 1967.

 

https://www.researchgate.net/publication/237305990_TUVA_THROAT_SINGING_ACOUSTICAL_ANALYSIS_AND_MODEL_OF_SOUND_PRODUCTION

JOHAN SUNDBERG : Perceptual aspects of singing*

Journal of Voice

Volume 8, Issue 2, June 1994, Pages 106-122
Journal of Voice

Perceptual aspects of singing*

johansundberg.jpg

Summary

The relations between acoustic and perceived characteristics ofvowel sounds are demonstrated with respect to timbre, loudness, pitch, and expressive time patterns. The conditions for perceiving an ensemble of sine tones as one tone or several tones are reviewed. There are two aspects of timbre of voice sounds: vowel quality and voice quality. Although vowel quality depends mainly on the frequencies of the lowest two formants, voice quality depends mainly on the frequencies of the higher formants. In particular, the center frequency of the so-called singer’s formant seems perceptually relevant. Vocal loudness, generally assumed to correspond closely to the sound pressure level, depends rather on the amplitude balance between the lower and the higher spectrum partials. The perceived pitch corresponds to the fundamental frequency, or for vibrato tones, the mean of this frequency. In rapid passages, such as coloratura singing, special patterns are used. Pitch and duration differences are categorically perceived in music. This means that small variations in tuning or duration do not affect the musical interval and the note value perceived. Categorical perception is used extensively in music performance for the purpose of musical expression because without violating the score, the singer may sharpen or flatten and lengthen or shorten the tones, thereby creating musical expression.

 

 

Key Words

Formant frequencies
Voice timbre
Vowel timbre
Fundamental frequency
Pitch
Coloratura
Overtone singing synthesis
Loudness
Vibrato
Singing
*
This is a revised version of the author’s presentation at the20th Annual Symposium: Care of the Professional Voice, Philadelphia, 1991.